Home > News > Scoping out science

More News

 
GPPC Undergraduate Philosophy Conference

GPPC Undergraduate Philosophy Conference

On April 26-27, the Department of Philosophy hosts the 34th annual Greater Philadelphia Philosophy Consortium Undergraduate Conference.
 
Women and Gender Studies Receives Mellon Foundation Grant

Women and Gender Studies Receives Mellon Foundation Grant

The Department of Women and Gender Studies has received a $100,000 grant from the Mellon Foundation’s new Affirming Multivocal Humanities initiative.
 
CONNECT
EMailTwitterFacebookYouTubeMake a Gift

Scoping out science

Image Picker for Section 0
Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

New microscope offers super-high-resolution look at numerous materials

Karl Booksh at microscope

Prof. Karl Booksh helped spearhead UD's efforts to acquire the new atomic force Raman microscope.

A single strand of DNA. The toxic pollutants in a waft of air. A paint sample from a priceless work of art. Flakes of a Martian meteorite. Thats only a smattering of what scientists will be able to examine with the new microscope an atomic force-Raman microscope, to be exact now housed in the University of Delawares Lammot du Pont Laboratory. 

UD is excited to add this important and state-of-the-art new tool to our suite of instruments for examining materials at high resolution, said Charles G. Riordan, vice president for research, scholarship and innovation.

With this capability, UD faculty, students and staff will be able to drive research and education forward in a wide array of fields, from engineering to physical sciences to art conservation.

The new microscope will help researchers go where they couldnt before. Previous scopes just didnt have the super-high resolution and chemistry-uncovering power this one has.

This microscope will allow scientists to see objects 10,000 times smaller than the diameter of a human hair plus provide detailed information about both the surface of a material and its chemistry, said Karl Booksh, professor of chemistry and biochemistry and the rallying force behind UDs successful proposal to the National Science Foundation.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Students and Booksh at microscope

Rachel McCormick (second from left) gives fellow chemistry doctoral student Devon Haugh (left) and Wofford College undergrad Savannah Talledo some training in how to use the new microscope, as Prof. Karl Booksh looks on.

NSF came through with a $558,228 grant from its Major Research Instrumentation and Chemistry Research Instrumentation programs and the Established Program to Stimulate Competitive Research (EPSCoR). The UD Research Office also helped support the cost of the instrument, which was purchased from Horiba, a leading provider of analytical and scientific measurement systems.

This new tool is a scientific twofer, combining two microscopes in one. A Raman microscope, named after the late Indian physicist and Nobelist Sir Chandrashekhara Venkata Raman, scans a sample with a laser, interacting with the vibrations of the molecule of interest, scattering the light. These light patterns serve as fingerprints for identifying the molecules and for studying their chemical bonds and degree of interactivity with other molecules. 

An atomic force microscope scans a sample using a small probe that yields information about the surface, such as its topography, hardness, electrical and thermal properties. This probe, tipped in gold, is nearly atomically sharp, meaning it is virtually able to detect a single atom. 

Combining both techniques within a single microscope delivers a trove of information simultaneously. And thats important for a number of studies across the University and with industry collaborators, as well as partnering institutions such as Winterthur Museum.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Putting the scope to work

Microscopic image

Indomethacin is an anti-inflammatory drug commonly used to treat pain, swelling and stiffness associated with arthritis and bursitis. Image taken with UDs new Raman microscope.

During the summer of 2019, doctoral student Devon Haugh and undergraduate Savannah Talledo, a Wofford College student participating in the NSF-funded Science and Engineering Leadership Initiative at UD, used the new microscope to study air pollutants.

Tiny gas particles from vehicle exhaust and soot generated from burning coal can fuel climate change and increase the risk of asthma, lung disease, heart disease and other health problems. The microscope helped to determine the acidity of the airborne particles, which influences how quickly they will grow in the atmosphere.

Understanding acidity can help us improve predictions of how airborne particles affect human health and climate, said Murray Johnson, professor of chemistry and biochemistry, who is leading the project.

In a conventional laboratory, acidity is measured with a pH meter. However, that approach does not work for airborne particles on the sub-micrometer-size scale, hence the need for new measurement approaches such as the Raman microprobe.

Haugh was glad to have access to the new instrument for her work. 

I care about the health of our environment, she said. This project allows me to contribute toward better understanding and protecting it.  

Experts at Winterthurs Scientific Research and Analysis Lab will focus the microscope on the museums valuable collections of historic textiles, as well as its Chinese export paintings from the 18th and 19th centuries, according to Jocelyn Alc??ntara-Garc??a, assistant professor of art conservation and a co-investigator on the grant. In the first half of the 19th century, with the boost in foreign trade due to the opening of ports in China, a large number of Western synthetic chemical pigments were imported to China. Before long, these man-made pigments replaced the mineral and plant pigments that Chinese painters had traditionally used in their artwork, from watercolors to reverse-painted glass. The new microscope will help conservation scientists gain a better understanding of this transitional period.

Alc??ntara-Garc??a said she will use the instrument to understand the fixatives that were used to set the dye in historic textiles, which will help textile conservators and other museum professionals determine degradation mechanisms and potential interventions.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Solving challenges on Earth and Mars

Microscopic image

Magnified view of a meteorite specimen from Mars under cross-polarized light. Image taken with UDs new Raman microscope.

Now, about those meteorites in a collaboration that began when he joined the UD faculty a decade ago, Booksh is working with Merck senior scientist Joseph P. Smith, who earned his doctorate in analytical chemistry at UD, and with Marietta College professor Frank Smith, who earned his doctorate in geology at UD, to unlock some of the secrets of the planets through clues provided by lunar, Martian and asteroidal meteorites. The samples came to the team on good authority from NASAs Johnson Space Center and from the Smithsonian.

The teams primary interest is the chemical composition and properties of these rocks, which contain shock pockets created from all the fracturing and melting that occurred when they hit the ground. Their chemistry can help reveal the geology and atmospheres of their home planets. Smith said the work also could aid the search for life on Mars in NASAs and the European Space Agencys 2020 rover missions.

The NASA and ESA rovers both will have, for the first time, Raman spectrometers to help characterize Martian surface materials, Smith said. As such, our work investigating meteorites may help enhance the search for life on Mars by developing optimal data collection and analysis methodologies.

Booksh and Smith also are working on other intriguing problems right here on Earthas collaborators on Merck & Co. Inc. and UD project focusing on pharmaceutical applications. The team will investigate polymorphism in drug development the ability of a solid to exist in two or more crystalline forms, each with vastly different physical and chemical properties. Polymorphs are of particular concern to the drug industry because one of these forms may be toxic, and more than 50 percent of active pharmaceutical ingredients have more than one polymorph.

Were hoping to develop the next generation of analytical techniques that will help solve these complex challenges facing the pharmaceutical industry, Smith said.

Article by Tracey Bryant; photos by Evan Krape; microscopic images courtesy of Booksh Lab Group

Published Oct. 2, 2019

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

 

 
Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

 

 
Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

 

 
Move Up

Move this whole section up, swapping places with the section above it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

 

 
News Story Supporting Images and Text
Used in the Home Page News Listing and for the News Rollup Page
A new atomic force Raman microscope adds a state-of-the-art tool to UD's ability to examine a wide variety of materials at very high resolution.
Art Conservation; Chemistry and Biochemistry
 
10/3/2019
Yes
Page Settings and MetaData:
(Not Shown on the Page)
Page Settings
raman microscope booksh
No
 
 
MetaData for Search Engine Optimization
Scoping out science