Home > News > Using clocks to detect ultralight dark matter

More News

 
Preserving Film, Preserving History

Preserving Film, Preserving History

UD project brings Hagley Museum and Library its largest ever film collection
 
Making an Impact

Making an Impact

Undergraduate student Derek Wu examines how tiny organisms change the world
 
CONNECT
EMailTwitterFacebookYouTubeMake a Gift

Using clocks to detect ultralight dark matter

Image Picker for Section 0
Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

UD’s Marianna Safronova and collaborators propose sending atomic clocks into space to study dark matter

University of Delaware physicist Marianna Safronova and collaborators say atomic clocks and other quantum sensors could be used to detect dark matter.

University of Delaware physicist Marianna Safronova and collaborators say atomic clocks and other quantum sensors could be used to detect dark matter.

As the precision and portability of atomic clocks continue to improve, University of Delaware physicist Marianna Safronova and collaborators Yu-Dai Tsai of the University of California, Irvine, and Joshua Eby of the University of Tokyo and the Kavli Institute for the Physics and the Mathematics of the Universe, want to put these precision timepieces to work in the quest to find dark matter.

Scientists have been trying for decades to understand “dark matter,” the unknown essence that represents an estimated 85% of all matter in the universe. Its effects can be observed, but it has not yet been detected directly.

This proposal, published Monday, Dec. 5 in Nature Astronomy, would send two atomic clocks into the inner reaches of the solar system to search for ultralight dark matter, which has wavelike properties that could affect the operation of the clocks.

Atomic clocks, which tell time by measuring the rapid oscillations of atoms, already are at work in space, enabling the Global Positioning System (GPS). Future space clocks could help spacecraft navigate and provide links to Earth-based clocks. Safronova has been part of other proposals, including one published in July that would link Earth-bound clocks to atomic clocks in orbit and test gravity. Putting atomic clocks into the variable gravity environment of space could produce gravity tests that are far more precise — by four orders of magnitude or 30,000 times more precise — than what is possible on Earth.

This proposal would send experiments that have been performed on Earth closer to the sun than Mercury, where there could be more dark matter to detect.

The work would be done by atomic, nuclear and molecular clocks that are still under development. They are frequently referred to as “quantum sensors.”

“This was inspired by the Parker Solar Probe,” Safronova said, referring to the ongoing NASA mission that sent a spacecraft closer to the sun than any other spacecraft has gone before. The probe flew across the sun’s corona for the first time in 2021 and continues to circle closer and closer.

“It has nothing to do with quantum sensors or clocks,” she said, “but it showed that you could send a satellite very close to the sun, sensing new conditions and making discoveries. That is much closer to the sun than what we are proposing here.”

NASA’s 2019 Deep Space Atomic Clock mission demonstrated the best atomic clock in space to date, Safronova said, but different types of clocks — based on much higher frequencies — have been developed in the past 15 years. Such “optical” clocks are orders of magnitude more precise and will not lose even a second of time in billions of years.

With that kind of technology now available on Earth, Safronova and her collaborators started talking about what sort of questions would be possible to study in space that cannot be done on Earth.

“It is a beautiful synergy between a quantum expert and particle theorists,” said Tsai, lead author of the Nature Astronomy article, “and we are working on new ideas at the intersection of these two fields."

They settled on this study of ultralight dark matter, which scientists say could make a huge halo-like region, bound to the sun.

“It has very specific properties and is a very specific dark matter that is detectable by clocks,” Safronova said.

Such ultralight dark matter would cause the energies of atoms to oscillate, Safronova said, and that will change how the clock ticks. This effect depends on the atoms the clock uses. The scientists track the differences seen in the clocks to look for dark matter.

“What is observable is the ratio of those two clock frequencies,” she said. “That ratio should oscillate if such dark matter exists.”

All clocks mark time using some kind of repetitive process — a swinging pendulum, for example, Safronova said. The atomic clock uses laser technology to manipulate and measure the oscillations of atoms. These oscillations are very fast. A clock based on strontium atoms, for example, “ticks” 430 trillion times per second, she said, and atomic clocks are far more accurate and stable than any mechanical devices.

In a lab, these atomic clocks cover a table or several tables, Safronova said, but portable atomic clocks have been developed that can fit into a van. NASA’s Deep Space Atomic Clock is even smaller — about the size of a toaster.

Nuclear clocks, which are based on nuclear energy levels rather than atomic energy levels, would be the best clock for this research, Safronova said, and she is involved in the project to build a prototype, funded by the European Research Council.

“We now have portable clocks and it’s fun to think about how you would go about sending such high-precision clocks to space and establish what great things we can do,” Safronova said.

As technology advances, more proposals and opportunities will emerge. NASA’s Artemis program will pioneer new lunar-based research, for example.

“There are a lot of things we can do on the moon, such as building telescopes and even gravitational wave detectors, enabling new science,” she said. “We want to learn many more things about the moon first, for example its seismic activity.”

Studies using quantum sensors are part of the University’s new Quantum Science and Engineering Program, Safronova said, an interdisciplinary graduate program that was established earlier this year. Studies focus on understanding and exploiting the unusual behavior of particles and excitations governed by the laws of quantum mechanics.

Atomic clocks are important in the study of geodesy, for example, the study of Earth’s geometric shape, gravity and orientation in space.

“These now can sense a one-centimeter difference in height,” Safronova said. “So they’re getting better and better.”

And as the technology improves, new questions emerge.

“There is a whole range of great things we can do in space,” Safronova said. “We are at the very, very beginning of that.”

About the researcher

Marianna S. Safronova is a professor in the Department of Physics and Astronomy at the University of Delaware. Her research focuses on quantum technologies and the search for physics beyond the standard model of elementary particles and fields, development of atomic and nuclear clocks and their applications, dark matter searches, development of high-precision relativistic atomic codes and development of the online atomic data portal. She earned her bachelor’s and master’s degrees in physics at Moscow State University and her doctorate in physics at the University of Notre Dame. Before joining UD’s faculty in 2003, she did postdoctoral work at the University of Notre Dame and was a guest researcher at the National Institute of Standards and Technology (NIST). She is a fellow of the American Physical Society (APS) and a member of the Quantum Science and Technology Journal editorial board.

Article by Beth Miller, Photo by Ariel Ramirez, Photo illustration by Jeffrey C. Chase
​December 05, 2022​

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Image Rendition

Change the way the image is cropped for this page layout.

Media Size

Cycle through size options for this image or video.

Original
50%
66%
100%
Fixed Portrait 1
Fixed Portrait 2
Cancel
Media Right/Left-Align

Align the media panel to the right/left in this section.

Insert Image

Open the image pane in this body section. Click in the image pane to select an image from the image library.

Insert Video

Open the video pane in this body section. Click in the video pane to embed a video. Click ? for step-by-step instructions.

Remove Image

Remove the image from the media panel. This does not delete the image from the library.

Remove Video

Remove the video from the media panel.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

Move Up

Move this whole section up, swapping places with the section above it.

Move Down

Move this whole section down, swapping places with the section below it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

Move Up

Move this whole section up, swapping places with the section above it.

Code Cleaner

Check for and fix problems in the body text. Text pasted in from other sources may contain malformed HTML which the code cleaner will remove.

Accordion is OFF

Accordion feature turned off, click to turn on.

Accordion is ON

Accordion featurd turned on, click to turn off.

Media Right/Left-Align

Align the media panel to the right/left in this section.

News Story Supporting Images and Text
Used in the Home Page News Listing and for the News Rollup Page
UD’s Marianna Safronova and collaborators propose sending atomic clocks into space to study dark matter
Physics and Astronomy
 
12/5/2022
No
Page Settings and MetaData:
(Not Shown on the Page)
Page Settings
Using clicks to detect ultralight dark matter
No
 
 
MetaData for Search Engine Optimization
Using clocks to detect ultralight dark matter